
一、模块尺寸

项目	参考值(mm)
LCM尺寸(长×宽×厚)	98. 0×60. 0×14. 2 (MAX)
可视区域(长×宽)	76. 0×26. 0
点间距(长×宽)	0.60×0.60
点尺寸(长×宽)	0.55×0.55
字符大小(长×宽)	2.96×4.75
字符间距(长×宽)	3.55×5.35

二、功能介绍

- ◆ 工作电压 3.3V 或者 5V, 只能选择一种电压使用, 下单请注明
- ◆ 通讯方式: 4位或者 8位并行通讯接口
- ◆ 字符显示器内存
 - 字符发生器 ROM (CGROM): 10880 位 (192 个 5*8 点阵格式字符和 64 个 5*11 点阵格式字符)
 - 字符发生器 RAM (CGRAM): 64*8 位 (5 个 5*8 点阵格式字符或 4 个 5*11 点阵格式字符,自编特殊字符)
 - 显示数据 RAM: 80*8 位*2 行(可以 16*2 个字符)
- ◆ ASCII 字符图案
 - 5X8 点 ASCII 字符图案 192 个
 - 5X11 点 ASCII 字符图案 64 个
 - 特殊字符图案可以对字符发生器 RAM 直接编程得到
 - 用户需要其它"通用字符"图案的,我们可以订制
- ◇ 功能指令
 - 光标闪烁 显示开关
 - 字符左右移动
- ◆ 低功率省电设计(除背光 30MA)
 - 正常模式 (550uA typ VDD=5V)
 - 待机模式 (30uA max VDD=5V)
- ◆ 自动上电复位功能
- ◆ 占空比 1/16 偏压比 1/5
- ◆ 工作温度-20℃--+70℃
- ♦ 储存温度-30℃--+80℃
- ◆ 可视角度6点
- ◆ 显示效果有黄底黑字,蓝底白字,白底黑字可选,下单请注明

三.接口定义

引脚	名称	方向	说明
1	VSS		电源负端(OV)
2	VDD		电源正端(+3.3V 或+5.0V,出厂时设定+5.0V)
3	VO		LCD 电压调节电压 当接地时,LCD 显示最深
4	RS	I	=1,写数据
4	CA .	1	=0, 写指令
5	RW	I	=0, 写模式
3	IVW	1	=1, 读模式
6	E	I	使能信号, 高电平有效。
7-14	DBO ~ DB7	1/0	单片机与模块之间并口的数据传送通道, 当用 4 位时, DBO-DB3 不用 DB7 能用作忙标志读出(判忙)
15	LEDA		背光电源的正极(3.3V 或者 5V)出厂 5V
16	LEDK	0	背光电源负极

四. 电性参数(直流)

名称	符号	加比4夕44		参数范围		单位
石 柳	11万	测试条件	最小	标准	最大	半型
模块工作电压	VDD	_	2.4	5. 0	5. 5	V
玻璃电压	VO	VO-VDD	4. 5	5. 0	7.0	V
背光工作电压	VLED	_	2.8	5.0	5.5	V
IO 输入高电平	VIH	_	2.2	1	VDD	V
IO 输入低电平	VIL	_	-0.3	1	0.6	V
LCM 输出高电平	VOH	_	2.4	1	1	V
LCM 输出低电平	VOL	_	_	1	0.4	V
模块工作电流	IDD	=VDD	-	-	0.5	MA
模块待机电流	IDO	=VDD	_		10	uA
背光工作电流	ILED	=VLED	8	15	20	MA

五. 显示原理

a) DDRAM

- ① 第一三行 00H-27H; 第二四行 40H-67H, 如下图 (DDRAM 与显示屏的关系)
- ② 移位范围为第一行 00H-27H; 第二行 40H-67H, 如下图(左移, 右移)移位范围取决于模块的占空比, 本模块占空比为 1/16
- ③ 显示原理为,写入地址,然后写入字符码,就能在显示器上显示你需要的字符,例如地址写 87H,字符码写 48H ,在第一行第 7 个字符显示"H"
- ④ 字符码是标准的 ASCII 编码,可以直接引用字符,程序能翻译出字符内码,你要显示什么字符,直接在源代码内写字符,例如写地址 80H,写显示字符 table[]="12345678ABCDEF",地址有自动加 1 的特点,这样在显示屏的第-行就显示 12345678ABCDEF

正常(DDRAM与显示屏的关系)20x4

$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 2 & 0 & 3 \end{bmatrix}$	04 05 06 07 08	09 0A 0B 0C 0D	0E 0F 10 11 12 13
$\boxed{40} \boxed{41} \boxed{42} \boxed{43}$	44 45 46 47 48	49 4A 4B 4C 4D	4E 4F 50 51 52 53
$\boxed{14} \boxed{15} \boxed{16} \boxed{17}$	18 19 1A 1B 1C	1 D 1 E 1 F 2 0 2 1	22 23 24 25 26 27
54 55 56 57	58 59 5A 5B 5C	5D 5E 5F 60 61	62 63 64 65 66 67

左移 一

01	02	03	04	05	06	07	08	09	O A	0 B	0 C	0 D	0 E	0 F	10	1 1	12	13	14
41	42	43	44	45	46	47	48	49	4 A	4 B	4 C	4 D	4 E	4 F	50	51	52	53	54
15	16	17	18	19	1 A	1 B	1 C	1 D	1 E	1 F	20	21	22	23	24	25	26	27	00
5 5	56	5 7	58	59	5 A	5 B	5 C	5 D	5 E	5 F	60	61	62	63	64	65	66	67	40

右移

$\begin{bmatrix} 27 & 00 & 01 & 02 \end{bmatrix}$	03 04 05	06 07 08	09 0A 0B	OC OD OF	0F 10 11	12
67 40 41 42	43 44 45	46 47 48	49 4A 4B	4C 4D 4F	E 4F 50 51	52
13 14 15 16	17 18 19	1 A 1 B 1 C	1 D 1 E 1 F	20 21 22	2 2 2 3 2 4 2 5	26
53 54 55 56	57 58 59	5 A 5 B 5 C	5D 5E 5F	60 61 62	63 64 65	66

写显示数据流程

LCD显示字符程序 第1行6列显示"H"

写指令函数(清零)

writeCommand(0x01);

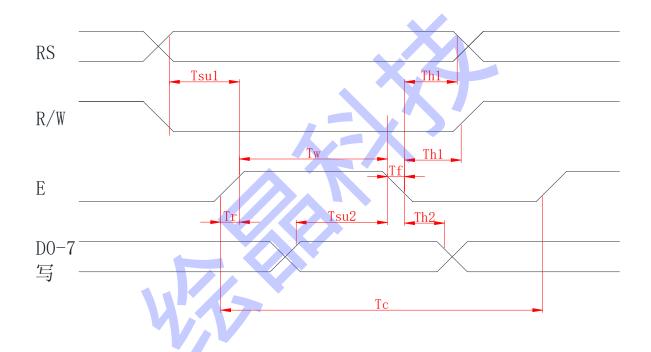
写指令函数 (写地址) writeCommand(0x80+7);

写数据函数 (数据)

writeData(0x48);

完成

b) 字符内码查询表


c) CGRAM

自编字符 CGRAM

模块预留了几个自编字符空间,编写一些特殊的字符或者符号,使用原理,进入 CGRAM (40H);选择内码地址 02 (00 到 08);然后写入 8*8 点阵数据 (横向取模),要显示自编字符时,写显示 DDRAM 地址,然后写入内码地址 02 就能显示自编字符了。

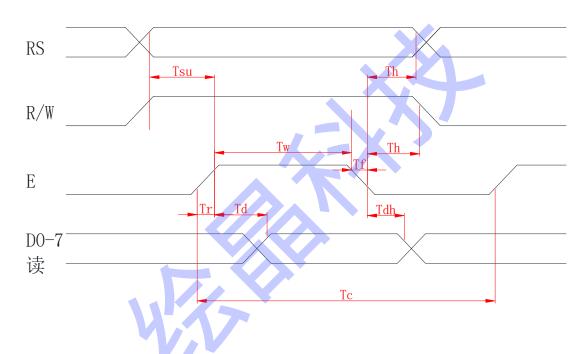
六. 时序图

写数据时序

VDD=5. OV

项目	信号	标识	条件	最小	最大	单位
E周期		Tc	写模式	500	-	
E上升/下降时间	Е	Tr,Tf		-	20	
E脉冲宽度(1,0)		Tw		230	-	
R/W和RS建立时间	D/W/ (DC	Tsu1		40	-	纳秒
R/W和RS保持时间	R/W (RS	Th1		10	-	
数据建立时间	DD[0.7]	Tsu2		80	-	
数据保持时间	DB[0-7]	Th2		10	-	

VDD=3.3V


项目	信号	标识	条件	最小	最大	单位
E周期	Е	Тс	写模式	1000	-	纳秒

绘晶科技

2004A 字符型液晶显示模块说明书

E上升/下降时间		Tr,Tf		-	25	
E脉冲宽度(1,0)		Tw		450	-	
R/W和RS建立时间	D/W/ (DC	Tsu1		60	1	
R/W和RS保持时间	R/W (RS	Th1		20	-	
数据建立时间	DB[0-7]	Tsu2		195	-	
数据保持时间		Th2		10	-	

读数据时序

VDD=5.0V

项目	信号	标识	条件	最小	最大	单位
E周期	E	Тс	读模式	500	-	
E上升/下降时间		Tr,Tf		-	20	
E脉冲宽度(1,0)		Tw		230	-	
R/W和RS建立时间	R/W (RS	Tsu		40	-	纳秒
R/W和RS保持时间	K/W (KS	Th		10	-	
数据建立时间	DD[0.7]	Td		-	120	
数据保持时间	DB[0-7]	Tdh		10	-	

VDD=3. 3V

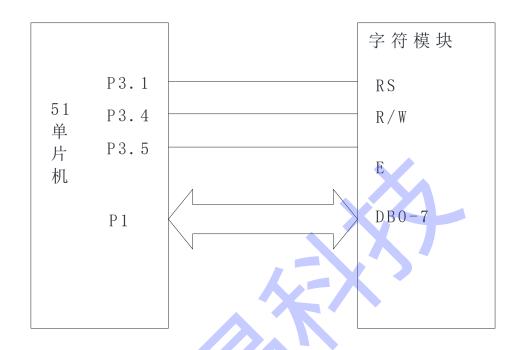
项目	信号	标识	条件	最小	最大	单位
E周期	E	Tc	读模式	1000	-	纳秒
E上升/下降时间	E	Tr,Tf	以 佚 八	-	25	\$131°D

绘晶科技

2004A 字符型液晶显示模块说明书

E脉冲宽度(1,0)		Tw		450	-	
R/W和RS建立时间	D/W/DC	Tsu		60	-	
R/W和RS保持时间	R/W (RS	Th		20	-	
数据建立时间	DB[0-7]	Td		-	360	
数据保持时间		Tdh		5	-	

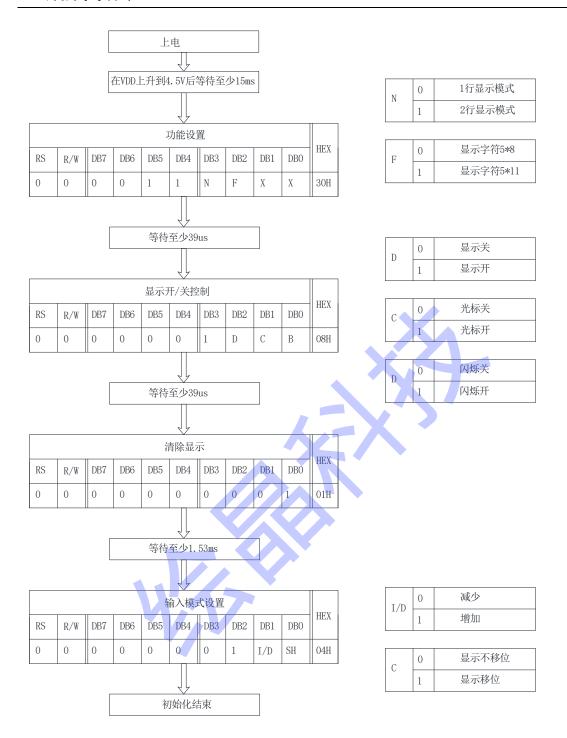
七、用户指令集说明:

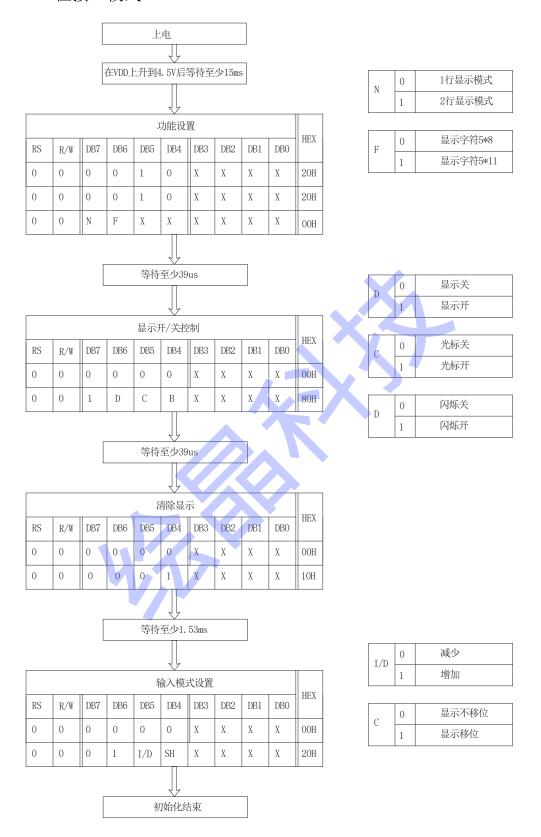

1、指令表:

N O	指令	指令码											执行时	W all
		RS	R/W	D7	D6	D5	D4	D3	D2	D1	DO	HEX	间	说明
1	清除显示	0	0	0	0	0	0	0	0	0	1	01	1.53ms	将20H(空格代码)写入DDRAM,将 地址计数器中的地址00H设置为 DDRAM地址(可以清除数据,光标初 始化,输出模式为递增
2	返回	0	0	0	0	0	0	0	0	1	0	02	1.53ms	将地址计数器中的地址00H设置为DDRAM地址,并将光标恢复至初始位置DDRAM的内容保持不变
3	输入模式设置	0	0	0	0	0	0	0	1	I/D	SH	04	39US	设置光标移动方向,并允许整个显示移动 I/D=1;光标闪烁右移,地址自增 I/D=0;光标闪烁左移,地址自减 SH=1,允许移动, SH=0,不允许移动
4	显示开关	0	0	0	0	0	0	1	D	С	В	08	39US	设置显示,光标,光标的闪烁控制位 D=1;显示开,D=0;显示关 C=1;光标开,C=0;光标关 D=1;光标闪,D=0;光标闪关
5	移位	0	0	0	0	0	1	S/C	R/L	-	_	10	39US	设置光标移动,显示移动方向的控制位,DDRAM数据保持不变SL,R/R 操作0,0光标向左移,地址自减10,1光标向右移,地址自增11,0所有显示左移,光标跟随移位1,1所有显示右移,光标跟随移位
6	功能设置	0	0	0	0	1	DL	N	F	I		20	39US	设置接口数据长度 DL=1;8位并口, DL=0;4位并口 显示行数 N=1;2行,N=0;1行 显示字符 F=1;5*11,F=0;5*8点阵
7	设置CGRAM地 址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	40	39US	在地址计数器内设置CGRAM地址
8	设置DDRAM地 址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	80	39US	在地址计数器内设置DDRAM地址
9	读忙标志	0	0	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0		ous	判忙(BF=1为忙,BF=0不忙,可以 接受指令)
10	写数据	1	0	D7	D6	D5	D4	D3	D2	D1	DO	00	438	写数据

11	读数据 1	1 D7	D6 D5	D4	D3	D2	D1	D0	00	43\$	读数据
----	-------	------	-------	----	----	----	----	----	----	------	-----

"-" 不考虑


八、单片机接线图


九、初始化程序

a) 在写程序之前都要先对模块的硬件软件初始化,

8位接口模式

4位接口模式

九、程序例程

```
//单片机:ATMEL:89S52, STC单片机完全兼容
//204
#include<reg52.h>
#include <intrins.h>
sbit RS=P3^1;
sbit RW=P3<sup>4</sup>;
sbit E=P3<sup>5</sup>;
sbit stop=P3^2;
//DB7-DB0 : P1
typedef unsigned int uint;
typedef unsigned char uchar;
unsigned char command, LCDdata, j;
unsigned int m, i, k;
uchar num, ii, z, z1, d, d1, s, s1, s10, s100;
void WaitNms(unsigned int x)//延时 x ms
unsigned char j;
while (x--)
\{for(j=0; j<125; j++)\}
{;}
void WaitNus(unsigned int x)//延时 x us
unsigned char j;
while (x--)
\{for(j=0; j<12; j++)\}
{;}
}
void INTI () interrupt 0 using 1
for(;;);
void BUSYFLAG(void)
```

```
uchar temp;
P1=0xff;
RS=0;
RW=1;
    while (1)
    E=1;
                                 //读状态字
    temp=P1;
    E=0;
    if ((temp\&0x80) == 0)
   break;
                            //判断忙标志是否为0
 }
}
void writeCommand(uchar command)
BUSYFLAG();
RS=0;
RW=0;
E=1;
P1=command;
E=0;
void writeData(uchar DATA)
BUSYFLAG();
RS=1;
RW=0;
E=1;
P1=DATA;
E=0;
LCDINT (void)
WaitNms(15);///延时 x ms
writeCommand(0x30);//8位
WaitNms(4);///延时 x ms
writeCommand(0x30);
WaitNus(100);///延时 x us
writeCommand(0x30);
```

```
writeCommand(0x38);//两行显示模式
writeCommand(0x01);//清屏
writeCommand(0x06);//画面不动
writeCommand(0x0c);//光标设置
writeCommand(0x80);//显示首址
void storeCGRAM(uchar d1, uchar d2)
        for(i=0;i<4;i++)
              writeData(d1);
              writeData(d2);
void writetest(uchar dd)
        for (i=0; i<80; i++)
         writeData(dd);
void writeALLcharacter(void)
for(i=0x20;i<(0x20+80);i++)//写ASCLL码
 writeData(i);
WaitNms(500);///延时 x ms
writeCommand(0x01);//清屏
for(i=0xA0;i<(0xA0+80);i++)//写ASCLL码
  {
writeData(i);
void display_string_5x8(uint column, uchar *text)
uint i=0, j;
   writeCommand(0x80+column);
    while(text[i]>0x00)
```

```
if((text[i] >= 0x20) \&\& (text[i] < 0x7e))
        j=text[i];
        writeData(j);
        WaitNms(100);///延时 x ms
    }
    else
    i++;
void time disp(uchar i, uchar z, uchar z1, uchar d, uchar d1, uchar s, uchar s1, uchar
s10, uchar s100)
uchar j; j=0x30;
writeCommand(0x80+i);
writeData(z+j); writeData(z1+j); writeData(':');
writeData(d+j); writeData(d1+j); writeData(':');
writeData(s+j); writeData(s1+j); writeData(':');
writeData(s10+j); writeData(s100+j);
uchar m1;
                                      //跑测试程序
for (m1=0; m1<50; m1++)
     EA=1;
     EX0=1;
      IT0=1;
   LCDINT();
// WaitNms(350);///延时 x ms
   writeCommand(0x01);//清屏
    writeALLcharacter();//调ASCLL码写入LCD
                                  ~~~~//1.2屏 调用ASCII
                                     ~//测试芯片的ROM
    writeCommand (0x01);
    writeCommand(0x40);
                           //自编图形 (横竖点)
```

```
storeCGRAM(0xff, 0xff);
    storeCGRAM(0xff, 0x00);
    storeCGRAM(0x00, 0xFF);
    storeCGRAM(OxAA, OxAA);
    storeCGRAM(0x55, 0x55);
    storeCGRAM(0xAA, 0x55);
    storeCGRAM(0x55, 0xAA);
    writeCommand(0x80);
    for(ii=0;ii<7;ii++)
        writetest(ii);
        WaitNms(350);
                                       `^//自编横竖点显示
                                        ~//3, 4, 5, 6, 7, 8屏
    writeCommand(0x01);//清屏
    display_string_5x8(4,"HUIJINGKEJI");
    display_string_5x8(0X40+4, "TEL:23146001");
    display_string_5x8(20, "welcome to HuiJing!");
    display_string_5x8(0X40+20, "Y works hard! thanks");
    WaitNms(400):///延时 x ms
                                         //调字符演示
                                          /左右移动演示
                                         老化测试99小时
    writeCommand(0x01);//清屏
    display_string_5x8(0, "HuiJing, 23146001; welcome to HuiJing Co.,");
    display_string_5x8(0X40, "Time:"); display_string_5x8(0X40+17, "you works hard!
thanks!");
    for (z=0; z<10; z++)
        for (z1=0; z1<10; z1++)
            for (d=0; d<6; d++)
                 for (d1=0; d1<10; d1++)
                     for (s=0; s<6; s++)
                         for (s1=0; s1<10; s1++)
                             writeCommand(0x18);
                              WaitNms(10);///延时 x ms
```

```
for (s10=0;s10<10;s10++)
    WaitNms(10);///延时 x ms
    for(s100=0;s100<10;s100++)
    time_disp(0X40+5, z, z1, d, d1, s, s1, s10, s100);
    WaitNms(10);///延时 x ms
```