
一、模块尺寸

经且利地

项目	参考值
LCM 尺寸(长×宽×厚)	$78.0 \times 35.9 \times 9.0$
可视区域(长×宽)	60. 5×18. 0
可视区域 (英寸)	2.4 (2.456)
点间距(长×宽)	0.40×0.40
点尺寸(长×宽)	0. 36×0. 36

二、功能介绍

- ◆ 工作电压 3.3V 或者 5V, 出厂默认 5V。
- ◆ 提供三种与 MPU 通讯方式: 4 位、8 位并行, 串行通讯 (默认出厂未固定, 用户自己控制 PSB 来选择)
- ◆ 48x16bit 的字符显示 RAM (LCD 最多显示汉字为 2 行 x 8 字)
- ◆ 64x128bit 的绘图 RAM (GDRAM)
- ◆ 2M bit 的中文字库 ROM (CGROM), 总共有 8192 个中文字型
- ◆ 16K bit 的半宽字型 ROW (HCGROM), 总共有 126 个字母符号字形
- ◆ 64x16 bit 的自定义字符 RAM (CGRAM)
- ◆ 自动上电复位功能
- ◆ 外置复位端 (XRESET)
- ◆ 低功率省电设计(除背光 30MA)
 - 正常模式 (450uA typ VDD=5V)
 - 待机模式 (30uA max VDD=5V)
- ◆ 显示驱动电压 VLCD (VO~VSS): 最大 7V
- ◆ 绘图以及文字画面混合显示功能
- ♦ 多功能指令:
 - 画面清除 (display clear) 显示移位 (display shift)
 - 垂直画面旋转 (vertical line scroll) ■ 光标归零 (display clear)
 - 显示开/关 (display on/off) 反白显示 (by line reverse display)
 - 光标显示/隐藏 (cursor on/off) 待机模式 (standby mode)
 - 显示字闪烁 (display character blink)
 - 光标移位 (cursor shift)
- ◆ 占空比 1/32 偏压比 1/6
- ◆ 可视角 6点钟,视角可以定制
- ◆ 显示颜色效果可选黄绿,蓝白,灰白,其它颜色可以定制

三. 接口定义

引脚		方向	说明
1	VSS		电源负端(0V)
2	VDD		电源正端(+3.3V 或+5.0V, 出厂时设定+5.0V)
3	VO		LCD 驱动电压输入,默认悬空
4	RS (CS)	I	并口方式: ● RS=0: 当 MPU 进行读模块操作,指向地址计数器。 当 MPU 进行写模块操作,指向指令寄存器。 ● RS=1: 无论 MPU 读/写操作,均指向数据寄存器。 串口方式: CS: 串行片选信号,高电平有效。
5	R/W(SID)	I	并口方式: ● R/W=0 写操作。 ● R/W=1 读操作。 串口方式: SID: 串行数据输入端
6	E (SCLK)	I	并口方式: 使能信号, 高电平有效。 串口方式: SCLK 串行时钟信号。
7-14	DB0 ~ DB7	1/0	MPU 与模块之间并口的数据传送通道, 4 位总线模式下 DO ~ D3 脚断开
15	PSB	I	串/并口控制选择端: (可以悬空/内部可调点)
16	NC		空脚
17	RST	Ι	复位脚(低电平有效)(可以悬空)
18	VOUT		LCD 电压输出(+4~+7V), 默认悬空
19	LEDA		背光电源正端(+3.3V 或+5.0V, 出厂时设定+5.0V)
20	LEDK		背光电源负端(OV)

1. 内部选择串口或并口

如果S短接,P不短接为串口通迅 如果P短接,S不短接为并口通迅 注意,不能 JS, JP 同时短接

3. 需要修改模块供电电压时

考虑到更改需要涉及到专业知识和基本技能,因此非专业人员,我们不建议用户自己更改模块参数,用户在选择样品的时候一定要选择自己设备适合的电压,如果用户已收到不符合自己设备电压的模块,测试不正常的时候请马上断电,联系我们客户人员或者更换适合自己设备电压的模块。

四. 电性参数(直流)

名称	符号	测计タ件		参数范围						
石 你	付与	测试条件	最小	标准	最大	单位				
模块工作电压 /	VDD		4. 5/3. 1	5.0/3.3	5. 5/3. 5	V				
玻璃电压	VO	VO-VDD	4.5	5. 0	7. 0	V				
背光工作电压	VLED		4.5/3.1	5. 0/3. 3	5.5/3.5	V				
IO 输入高电平	VIH		0. 7VDD	-	VDD	V				
IO 输入低电平	VIL	_	-	_	0.6	V				
LCM 输出高电平	VOH	_	0.8VDD	_	VDD	V				
LCM 输出低电平	VOL	_	_	_	0.4	V				
模块工作电流	IDD	=VDD	_	_	0. 5	MA				
模块待机电流	IDO	=VDD	_	_	10	uA				
背光工作电流	ILED	=VLED	8	15	20	MA				

五.显示原理

文本模式

DDRAM 地址与 128*32 点阵显示屏的关系 (可以显示 8*2=16 个汉字)

7	- 1	

ĺ	V	X								128	点							128 点													
	1 \		Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L													
	32		8	0	8	1	8	82		83		84		5	8	6	8	7													
	点		9	0	9	1	92		9	3	9	4	9	5	9	6	9	7													

80 表示 DDRAM 地址,80 代表一个显示汉字的地址,占 16*16 点阵,只要在80 地址内写入汉字内码就能显示你的汉字或者字符,汉字内码有两个字节,高位(H)写在前,低位(L)写在后,注意地址会自动加1。

现在的单片机编译软件都能把引用的汉字编译出汉字内码, HJ12832ZW 有标准的 GB2312 简体字库, 收到汉字内码直接调取内部对应点阵显示在屏幕上。

图形模式

GDRAM 与 12832 点阵的关系(128*32 点阵的绘图像素)

表 2

[X	点	128 点												
	Y 点		H L 8	8 8	8 8	8 8	8 8	8 8	8 8	8 8					
			0	I	2	3	4	5	6	7					
		0	YOXO	YOX1	Y0X2	Y0X3	Y0X4	YOX5	YOX6	YOX7					
		1	Y1X0	Y1X1	Y1X2	Y1X3	Y1X4	Y1X5	Y1X6	Y1X7					
		2	Y2X0	Y2X1	Y2X2	Y2X3	Y2X4	Y2X5	Y2X6	Y2X7					
	左	` `	***	***	***	***	***	***	***	***					
		3	Y31X0 Y31X		Y31X2	Y31X3	Y31X4	Y31X5	Y31X6	Y31X7					

Y 为列的位置, X 是水平上的地址(水平一个地址有16个点)

	位= 点	D1 5	D1 4	D1 3	D1 2	D1 1	D1 0	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
字	早节				I	I				L							
地	也址	80h															

GDRAM 与 128*32 点阵的分布图,程序写入过程为,先写入垂直地址,例如(0-31)再写水平 X 地址,例如;(0-7),一个水平地址有 1*16 位点阵(分两字节,先写高字节,再写低字节,高位在左边),水平地址可以自动加 1,

要调一幅图片时,使用横向取模取出点阵数据, 你也可以自编图形, 在最后的程序 例程中,有绘制边框供你参考

写显示数据流程

自编字符 CGRAM

模块预留了1024b 自编字符空间(可以写汉字4个),编写一些特殊的字符或者符号.

写入地址范围为 0x40-0x7F, 每一个地址可以放两个字节,

自编字库的调用地址为 00-07H 范围;

自编地址,调用地址显示关系 如下

绘晶科技

HJ12832ZWC 带汉字液晶显示模块说明书

自编地址 调用地址

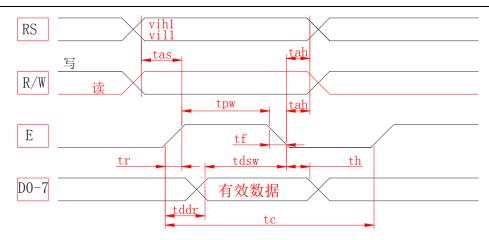
0x40; 0x00,0x00;

0x50; 0x00,0x02;

0x60; 0x00,0x04;

0x70 0x00, 0x06;

假设要自编一个汉字,

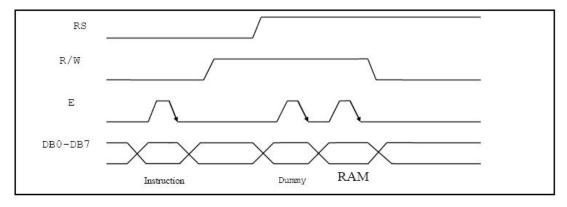

0x40~0x4f 有 16 行,每行可以放入 16 点,就完成一个汉字 16*16 写入 要显示出自编汉字,根据对应的关系,写地址 0x00,0x00;

内部的字符

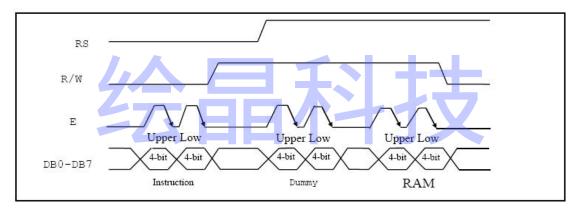
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
00		9	8	٠	*	Ŷ	÷	•	٠	0	0	ď	Ŷ	ŗ	Ħ	¥
10	F	H	‡	!!	P	δ	_	ŧ	t	Ŧ	→	+	-	**	•	₹
20		•	•	#	\$	/	8	•	¢	1	æ	+	,	-	I	/
30	Ø	4	2	3	4	5	6	7	8	9	1		<	=	×	?
40	0	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	0
50	P	Q	R	S	T	U	V	М	X	Y	Z	E	\	1	^	
60	•	a	Ь	C	d	е	f	g	h	i	j	k	1	m	n	o
70	p	q	r	S	t	u	v	W	×	y	z	{	ł	}	~-	Δ

六. 时序图

并口时序

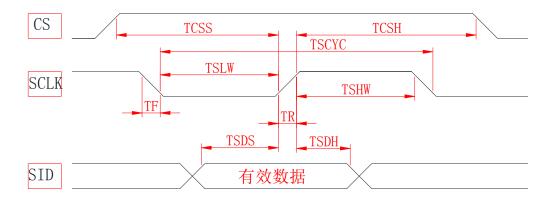

并口模式常温 (环境25度, VDD=4.5V 或者 VDD=2.7V)

	1	-4.5V 以有 VDD-2.		272	п.	
参数	符号	测试条件	最小	典型	最大	单位
		内部时钟				
振荡频率	Fosc	R=33kr/R=18kr	480/470	540/530	600/590	Khz
		外部时钟				
外部频率	fex	_	480/470	540/530	600/590	Khz
占空比			45	50	55	%
上升/下降时间	Tr,tf	_	_	_	0.2	us
	写	模式(从单片机写数	(据到模块)			
E周期	Tc	Е	1200/1800	-	-	Ns
E脉冲宽度	Tpw	Е	140/160	-	-	Ns
E上升/下降时间	Tr,tf	E	Y -		25	Ns
地址建立时间	Tas	Rs,r/w,e	10	-	-	Ns
地址保持时间	Tah	Rs,r/w,e	20	_	-	Ns
数据建立时间	Tdsw	D0-d7	40	-	_	Ns
数据保持时间	Th	D0-d7	20	-	_	Ns
	读	模式(从模块读数据	居到单片机)			
E周期	Тс	Е	1200/1800	-	-	Ns
E脉冲宽度	Tpw	Е	140/320	-	-	Ns
E上升/下降时间	Tr,tf	Е	-	-	25	Ns
地址建立时间	Tas	Rs,r/w,e	10	-	_	Ns
地址保持时间	Tah	Rs,r/w,e	20	-	-	Ns
数据建立时间	Tddr	D0-d7 - 100/260		100/260	Ns	
数据保持时间	Th	D0-d7	20	-	_	Ns


并口传输方式:

当 PSB 脚 (串/并口选择)接高电平时,模块将进入并口模式,在并口模式下可由指令 DL FLAG 来选择 8-位或 4-位接口,主控制系统将配合(RS、RW、E、DBO..DB7)来达成传输动作。从一个完整的流程来看,当设定地址指令后(CGRAM、DDRAM)若要读取数据时需先 DUMMY READ 一次,才会读取到正确数据第二次读取时则不需 DUMMY READ 除非又下设定地址指令才需再次 DUMMY READ。在 4-位传

输模式中,每一个八位的指令或数据都将被分为两个字节动作:较高 4(DB7~DB4)的资料将会被放在第一个字节(DB7~DB4)部分,而较低 4 位(DB3~DB0)的资料则会被放在第二个字节的(DB7~DB4)部分,至于相关的另四位则在 4-位传输模式中 DB3~DB0 接口未使用。相关接口传输讯号请参考下图说明:

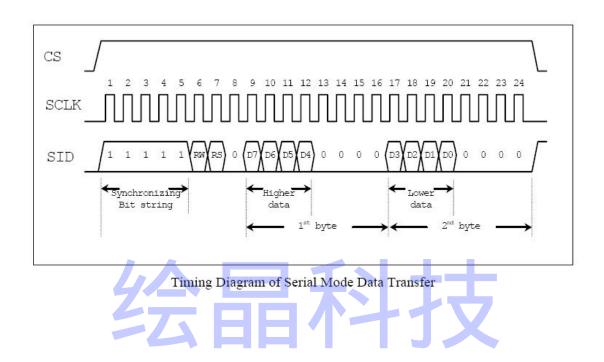


Timing Diagram of 8-bit Parallel Bus Mode Data Transfer

Timing Diagram of 4-bit Parallel Bus Mode Data Transfer

串口时序

串口模式常温(环境25度, VDD=4.5V 或者 VDD=2.7V)


4 - 次2(市価 (*))	7620/X, VDD	-4. JV 以名 VDD-2.	11)			
参数	符号	测试条件	最小	典型	最大	单位
		内部时钟				
振荡频率	Fosc	R=33kr/R=18kr	470	530	590	Khz
		外部时钟				
外部频率	fex	-	470	530	590	Khz
占空比			45	50	55	%
上升/下降时间	Tr,tf	-	_	ı	0.2	us
	写	模式(从单片机写数	(据到模块)			
串行时钟周期	TSCYC	E/SCLK	400/600	-	_	Ns
SCLK高脉宽	TSHW	E/SCLK	200/300	-	_	Ns
SCLK脉宽	TSLW	E/SCLK	200/300		_	Ns
SID数据建立时间	TSDS	RW/SID	40	-	-	Ns
SID数据保持时间	TSDH	RW/SID	40		-	Ns
CS建立时间	TCSS	RS/CS	60		_	Ns
CS保持时间	TCSH	RS/CS	60	_	_	Ns

串口传输方式:

当PSB脚(串/并口选择)接低电位时,模块将进入串口模式。从一个完整的串口传输流程来看,一开始先传输启始字节,它需先接收到五个连续的'1'(同步

位字符串),在启始字节,此时传输计数将被重置并且串行传输将被同步,再跟随的两个位字符串分别指定传输方向位(RW)及寄存器选择位(RS),最后第八的位则为'0'。在接收到同步位及RW和RS资料的启始字节后,每一个八位的指令将被分为两个字节接收到:较高4位(DB7~DB4)的指令资料将会被放在第一个字节的LSB部分,而较低4位(DB3~DB0)的指令资料则会被放在第二个字节的LSB

部分,至于相关的另四位则都为0。串行传输讯号请参考下图说明

七、用户指令集说明:

1、**指令表:** (RE=0: 基本指令集)

					指令	~码					执行时间		
指令	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX		(540KHZ)
清除显示	0	0	0	0	0	0	0	0	0	1	0X01	将DDRAM填满"20H",并 且设定DDRAM的地址计数 器(AC)到"00H"	1.6ms

绘晶科技 HJ12832ZWC 带汉字液晶显示模块说明书

地址归零	0	0	0	0	0	0	0	0	1	X	0X02	设定DDRAM的地址计数器 (AC)到"00H",并且将 光标移到开头原点位置, 这个指令并不改变DDRAM 的内容	72us
输入点设 定	0	0	0	0	0	0	0	1	I/D	S	0X4X	指定在数据的读取与写入 时,设定光标的移动方向 及指定显示的移位	72us
显示状态 开/关	0	0	0	0	0	0	1	D	С	В	0x8x	D=1;整体显示ON C=1;光标ON B=1;光标位置反白ON	72us
光标或显 示移位控 制	0	0	0	0	0	1	S/C	R/L	X	X	0x1x	设定光标的移动与显示的 移位控制位;这个指令并 不改变DDRAM的内容	72us
功能设定	0	0	0	0	1	DL	X	ORE	X	X	0X2X	DL=1; 8位控制模式 DL=0; 4位控制模式 RE=1; 选择扩展指令集 RE=0; 选择基本指令集	72us
设定CGRAM 地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO	0X4X	设定CGRAM地址到地址计数器(AC)需确认扩展指令中SR=0(卷动地址或RAM地址选择	72us
设定DDRAM 地址	0	0	1	0AC 6	AC5	AC4	AC3	AC2	AC1	AC0	0X8X	设定CGRAM地址到地址计 数器(AC) AC6固定为0	72us
读取忙碌 标志 (BF) 和地址	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	ACO		读取忙碌标志 (BF) 可以 确认内部动作是否完成, 同时可以读出地址计数器 (AC) 的值	0us
写数据到 RAM	1	0	D7	D6	D5	D4	D3	D2	D1	DO		写入数据到内部RAM (DDRAM/CGRAM/GDRAM)	72us
读出RAM的数据	1	0	D7	D6	D5	D4	D3	D2	D1	DO		从内部RAM读取数据 (DDRAM/CGRAM/GDRAM)	72us

指令表二: (RE=1: 扩充指令集)

指令					指名	〉码					НЕХ	说明	执行时间 (540KHZ)
	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0			

绘晶科技 HJ12832ZWC 带汉字液晶显示模块说明书

待机模式	0	0	0	0	0	0	0	0	0	1	0X01	进入待机模式,执行任何 其它指令都可终止待机 模式(COMI~32停止动作)	72us
卷动地址 或RAM地 址选择	0	0	0	0	0	0	0	0	1	SR	0X02	SR=1;允许输入垂直卷动 地址SR=0;允许设定 CGRAM地址(基本指令)	72us
反白选择	0	0	0	0	0	0	0	1	R1	RO	0X4X	选择4行中的任一行反白显示,并可决定反白与否R1,R0初什为'00,当第一次设定时为反白显示,再一次设定时为正常显示	72us
扩充功能设定	0	0	0	0	1	DL	X	1RE	G	0	0X3X	DL=1; 8位控制模式 DL=0; 4位控制模式 RE=1; 选择扩展指令集 RE=0; 选择基本指令集 G=1; 绘图显示ON G=0; 绘图显示OFF	72us
设定IRAM 地址或卷 动地址	0	0	0	1	AC5	AC4	АСЗ	AC2	AC	AC0	0X4X	SR=1: AC5 [~] AC0为垂直卷 动地址	72us
设定绘图 RAM地址	0	0	7	00	OAC5	0AC 4	AC3	AC2 AC2	AC 1A C1	ACO ACO	0X8X	设定(GDRAM地址到地址 计数器(AC) 先设垂直地址再设水平 地址(连续写入两个字节 的坐标地址) 垂直地址范围AC5~AC0 水平地址范围AC3~AC0	2us

2、具体指令介绍:

基本指令 (RE=0)

1) 清除显示:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	HEX
代码	0	0	0	0	0	0	0	0	0	1	0x01

功能:将DDRAM 填满"20H"(空格),把DDRAM 地址计数器调整"00H",重新进入点设定将I/D设为"1",光标右移AC m1。

2) 地址归位:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	0	0	0	0	0	1	X	0x02

功能:把DDRAM 地址计数器调整为"OOH",光标回原点,该功能不影响显示DDRAM

3) 输入点设置:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	0	0	0	0	1	I/D	S	0x04

功能: 设定光标移动方向并指定整体显示是否移动。

I/D=1 光标右移, AC自动加1; I/D=0 光标左移, AC自动减1。

S=1 且DDRAM为写状态:整体显示移动,方向由I/D决定(I/D=1左移,I/D=0 右移)

S=0 或DDRAM 为读状态:整体显示不移动.

4) 显示状态开/关:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	7	HEX
代码	0	0	0	0	0	0	1	D	С	В		0x08

功能: D=1: 整体显示ON; D=0: 整体显示OFF。

C=1: 光标显示ON; C=0: 光标显示OFF。

B=1: 光标位置反白且闪烁; B=0: 光标位置不反白闪烁。

5) 光标或显示移位控制:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	HEX
代码	0	0	0	0	0	1	S/C	R/L	X	X	0x1x

功能: S/C: 光标左/右移动, AC减/加1。

R/L: 整体显示左/右移动, 光标跟随移动, AC值不变。

S/C	R/L	说明	AC值
L	L	光标向左移动	AC=AC-1
L	Н	光标向右移动	AC=AC+1
Н	L	显示向左移动, 且光标跟着移动	AC=AC

Н	Н	显示向右移动。目光标跟着移动	AC=AC
11	11		110 110

6) 功能设定:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	0	1	DL	X	RE	X	X	0x2x

功能: DL=1: 8-BIT 控制接口; DL=0: 4-BIT 控制接口。 RE=1: 扩充指令集动作: RE=0: 基本指令集动作。

7) 设定CGRAM地址:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	0x4x

功能:设定CGRAM地址到地址计数器(AC),需确定扩充指令中SR=0(卷动 地址或RAM地址选择)

功能:设定DDRAM地址到地址计数器(AC)

9) 读取忙碌状态 (BF) 和地址:

_	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0xXx

功能: 读取忙碌状态 (BF) 可以确认内部动作是否完成, 同时可以读出地 址计数器(AC)的值, 当BF=1, 表示内部忙碌中此时不可下指令需等BF=0 才可下新指令

10) 写资料到RAM:

								D2			HEX	
代码	1	0	D7	D6	D5	D4	D3	D2	D1	D0	0xXx	

功能:写入资料到内部的RAM(DDRAM/CGRAM/GDRAM),每个RAM地 址都要 连续写入两个字节的资料。

11) 读RAM的值:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	1	1	D7	D6	D5	D4	D3	D2	D1	DO	0xXx

功能:从内部RAM 读取数据(DDRAM/CGRAM/GDRAM),当设定地址 指令后,若需读取数据时需先执行一次空的读数据,才会读取到正确数据,第二次读取时则不需要,除非又下设定地址指令。

扩充指令(RE=1)

1) 待命模式:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	0	0	0	0	0	0	1	0x1x

功能: 进入待命模式, 执行其它命令都可终止待命模式

2) 卷动地址或RAM地址选

	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	HEX
代码	0	0	0	0	0	0	0	0	1	SR	0x2x

功能: SR=1: 允许输入卷动地址;

SR=0: 允许设定CGRAM地址(基本指令)

3) 反白选择:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	HEX	
代码	0	0	0	0	0	0	0	1	R1	R0	0x4x	

功能:选择2 行中的任一行作反白显示,并可决定反白与否。第一次设定为反白显示,再次设定时为正常显示

12832	R1	RO	行地址参数
屏	L	L	第一、行反白或正常显示

L	Н	第二、行反白或正常显示

4) 睡眠模式:

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	0	0	0	0	1	SL	X	X	0x08

功能: SL=1: 脱离睡眠模式; SL=0: 进入睡眠模式。

5) 扩充功能设定:

功能: DL=1: 8-BIT 控制接口; DL=0: 4-BIT 控制接口

RE=1: 扩充指令集动作; RE=0: 基本指令集动作

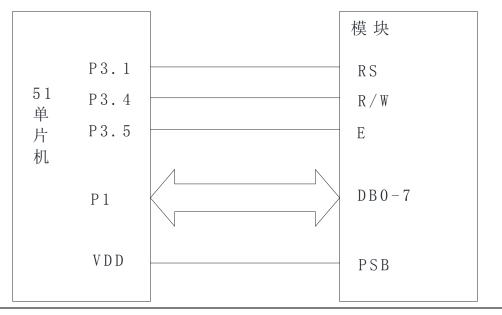
G=1: 绘图显示ON; G=0: 绘图显示OFF

6) 卷动地址设定:

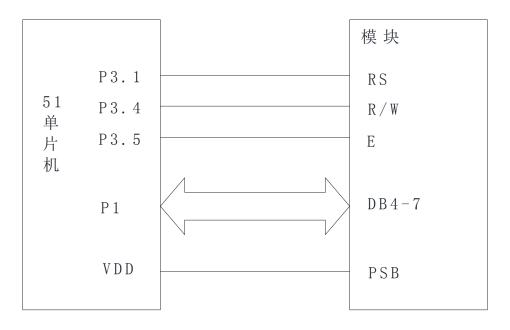
	RS	RW	D7	D6	D5	D4	D3	D2	D1	DO	HEX
代码	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	0x4x

功能: SR=1, AC5~AC0 为垂直卷动地址

7) 绘图RAM地址设定:

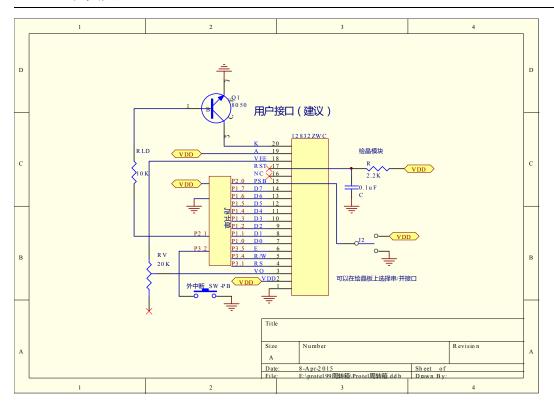

	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0	HEX
代码	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0x8x

功能:设定GDRAM地址到地址计数器(AC)

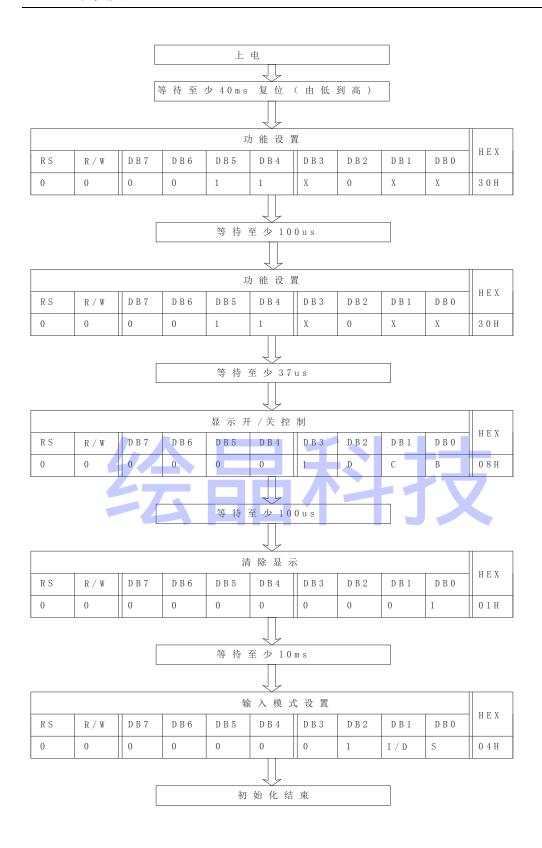

绘晶科技

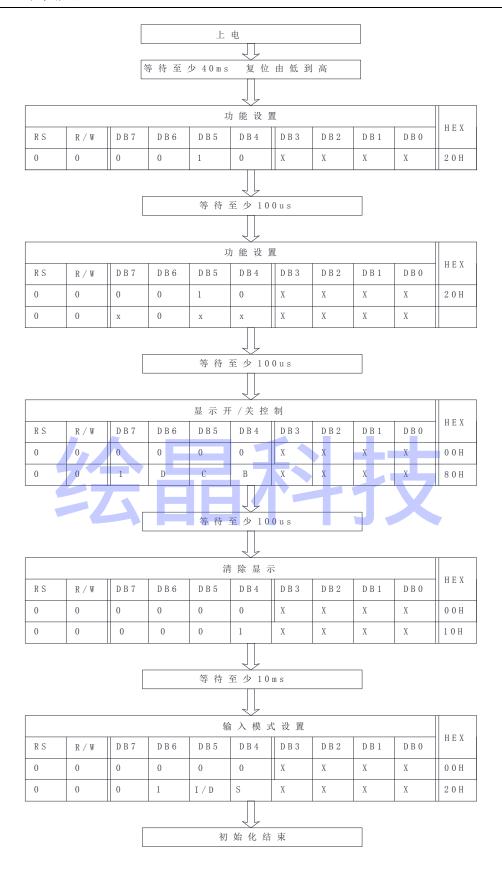
八、单片机接线图

1)、8位并联接口:



2)、4位并联接口:


开发者使用接口参数


九、初始化程序

a) 在写程序之前都要先对模块的硬件软件初始化,

8位接口模式

4位接口模式

九、程序例程

```
//深圳绘晶科技有限公司、
//128X32点阵中文字库,单片机:89S52, 晶振:12M,
//STC单片机完全兼容
//串并行共用程序
//并口
#include(reg52.h>
#include <intrins.h>
//sbit REST=P2^1:
sbit RS=P3<sup>1</sup>;//CS
sbit RW=P3<sup>4</sup>; //SID
sbit E1=P3<sup>5</sup>; //SCLK
sbit PSB=P2<sup>0</sup>;//并口时, PSB=1; 串口时, PSB=0
sbit stop=P3<sup>2</sup>;//低电平触发
typedef unsigned int Uint;
typedef unsigned char Uchar;
Uchar z, z1, d, d1, s, s1, s10, s100, m1;
//汉字,直接可以写入字形,写入标点符号后要加空格键
unsigned char code uctech[] = {"欢迎来到绘晶科技"};
//显示在第1,3行/
unsigned char code uctech3[]
//显示在第2,4行
unsigned char code uctech6[] = {"绘晶的经营方向是"};
//显示在第1,3行
unsigned char code uctech7[] = {"汇聚焦点精品至上"};
//显示在第2,4行
unsigned char code uctech1[] = {" HIUJINGKEJI"};
//显示在第2行
unsigned char code uctech2[] = {" 128*32 DOT"};
//显示在第3行
unsigned char code uctech4[] = {"TIME"};
unsigned char code uctech5[] = {"绘晶科技23146001"};
unsigned char code uctech8[] = {"有8192个中文字型"};
unsigned char code uctech9[] = {"有126 个字母符号"};
//这个是在串口时指令和数据之间的延时
void delay10US(Uchar x)
  Uchar k;
 for (k=0; k \le x; k++);
```

}

```
const Uchar delay=250; //延时时间常数
static void Wait1ms(void)//延迟1 ms
 Uchar cnt=0;
 while (cnt<delay) cnt++;
//延迟n ms
void WaitNms(int n)
   Uchar i;
   for (i=1; i \le n; i++)
   Wait1ms();
}
//以下是并口时才开的
//读忙标志.
void RDBF(void)
   Uchar temp;
   RS=0:
          // RS=0
          // RW=1
   RW=1;
   while(1)
   P1=0xFF;
              //数据线为输入
   E1=1;
   temp=P1;
   E1=0; // E=0
   if ((temp\&0x80)==0) break;
//写数据到指令寄存器
void WRCommandH(Uchar comm)
   RDBF();
   RS=0;
   RW=0:
   P1=comm;
   E1=1;
   E1=0;
```

```
//写数据到数据寄存器
void WRDataH(Uchar TEMP)
   RDBF();
   RS=1;
   RW=0;
   P1=TEMP;
   E1=1:
   E1=0;
}
//以下是串口时开的读写时序
void SendByteLCDH(Uchar WLCDData)
Uchar i;
 for (i=0; i<8; i++)
 if ((WLCDData << i) \&0x80) RW=1;
 else RW=0;
E1=0:
E1=1;
}
SPIWH (Uchar Wdata, Uchar WRS)
  SendByteLCDH(0xf8+(WRS<<1));//寄存器选择WRS
  SendByteLCDH(Wdata&0xf0);
  SendByteLCDH((Wdata<<4)&0xf0);</pre>
}
void WRCommandH(Uchar CMD)
 RS=0;
 RS=1;
 SPIWH (CMD, 0);
 delay10US(90);//89S52来模拟串行通信,所以,加上89S52的延时,
}
```

```
void WRDataH(Uchar Data)
 RS=0;
 RS=1;
 SPIWH(Data, 1);
}
*/
//初始化LCD-8位接口
void LCDInit(void)
  //PSB=0; //串口
   PSB=1; //并口时选这个, 上一行取消
    REST=1;
//
//
     REST=0;
     REST=1;
   WRCommandH (0x30);
                      //基本指令集,8位并行
   WRCommandH (0x06);
                      //启始点设定: 光标右移
   WRCommandH (0x01);
                      //清除显示DDRAM
   WRCommandH (0x0C);
                      //显示状态开关:整体显示开,光标显示关,光标显示反白关
   WRCommandH (0x02);
                      //地址归零
}
//addr为汉字显示位置,*hanzi汉字指针;count为输入汉字串字符数
void ShowQQCharH(Uchar addr, Uchar *hanzi, Uchar count)
   Uchar i;
                    //设定DDRAM地址
   WRCommandH(addr);
   for(i=0; i < count;)</pre>
       WRDataH(hanzi[i*2]);
       WRDataH(hanzi[i*2+1]);
       i++;
}
//addr为半宽字符首个地址,i为首个半宽字符代码,count为需要输入字符个数
void ShowNUMCharH(Uchar addr, Uchar i, Uchar count)
{
    Uchar j;
   for(j=0; j<count;)</pre>
       WRCommandH(addr); //设定DDRAM地址
       WRDataH(i+j);//必为两个16*8位字符拼成一个16*16才能显示
```

}

```
j++;
      WRDataH(i+j);
      addr++;
      j++;
   }
}
//自定义字符写入CGRAM
//data1是高八位,data2是低八位,一存必须存两个字节,横向存两字节,后纵向累加,共16行
//一个自定义字符为16*16点阵
//第一个存入字节为从40H开始,到4F结束为第一个自定义汉字符,之后调出地址从8000H为始第
一个
//addr为存入头地址
void WRCGRAMH (Uchar data1, Uchar data2, Uchar addr)
{
    Uchar i;
    for (i=0; i<16;)
    WRCommandH(addr+i);
                       //设定CGRAM地址
    WRDataH(data1);
    WRDataH(data1);
    i++;
    WRCommandH(addr+i);
    WRDataH(data2);
    WRDataH(data2);
    i++;
 }
//自定义字符写入CGRAM
//显示上半屏自定义的字符,并把这个字符填满全屏16*16
//addr为显示地址,把自定义字符当一个汉字调出,从8000H开始为第一个,
//8100H为第二个,8200H为第三个,8300H为第四个,中文字库只能自定义四个字符
//i为自定义字符调出地址,先输入低位,再输入高位
//IC决定,中文字库类,一个IC最多只能显示16*2个汉字
void ShowCGCharH(Uchar addr,Uchar i)
   Uchar j;
   for (j=0; j<0x20;)
      WRCommandH(addr+j); //设定DDRAM地址
      WRDataH(0x00);//字符地址低八位
      WRDataH(i);//字符地址高八位
      j++;
```

```
void WRGDRAM128X8(Uchar x1,Uchar y1,Uchar d1 )
  Uchar j,i;
       WRCommandH(0x34);
                                //去扩展指令寄存器
       WRCommandH (0x36);
                                //打开绘图功能
                                    //
       for(j=0; j<16; j++)
          {
              WRCommandH(0x80+y1+j); //Y总坐标,即第几行
              WRCommandH(0x80+x1); //X坐标,即横数第几个字节开始写起,80H为第一个
字节
              for(i=0; i<8; i++) //写入一行
              WRDataH(d1);
              WRDataH(d1);
          }
}
//上半屏清除图形区数据
void CLEARGDRAMH (Uchar c)
      Uchar j;
      Uchar i;
       WRCommandH (0x34);
       WRCommandH (0x36);
      for (j=0; j<32; j++)
          {
              WRCommandH (0x80+j);
              WRCommandH(0x80);//X坐标
              for(i=0; i<16; i++)//
              WRDataH(c);
              WRDataH(c);
          }
}
void wr_org(Uchar x, Uchar 1, Uchar r )
  Uchar j;
  Uchar i;
```

```
//去扩展指令寄存器
      WRCommandH (0x34);
                           //打开绘图功能
      WRCommandH(0x36):
      //两横的上边框 下边框
      for (j=0; j<2; j++)
                               //2行
        {
            WRCommandH(0x80+j); //Y总坐标,即第几行
            WRCommandH(0x80); //X坐标, 即横数第几个字节开始写起,80H为第一个字节
            for(i=0; i<8; i++) //写入一行
            WRDataH(x);
            WRDataH(x);
            WRCommandH(0x80+30+j); //Y总坐标,即第几行
            WRCommandH(0x80); //X坐标, 即横数第几个字节开始写起,80H为第一个字节
            for(i=0; i<8; i++) //写入一行
            WRDataH(x);
            WRDataH(x);
       //上半屏两横的右左边框
      for (j=2; j<30; j++)
           //先上半屏
            WRCommandH(0x80+j); //Y总坐标,即第三行开始
            WRCommandH(0x80); //X坐标,即横数第几个字节开始写起,80H为第一个字节
            WRDataH(1);
            WRDataH(0x00);
            WRCommandH(0x80+j); //Y总坐标,即第三行开始
            WRCommandH(0x80+7); //X坐标,即横数第几个字节开始写起,80H为第一个
字节
            WRDataH(0x00); WRDataH(r);
        }
}
//P3.2按键中断
void ini_intl(void)
{
EA=1:
EX0=1; //允许外部INT0的中断
IT0=1;// 允许中断
int scankey1() interrupt 0 using 3 //使用外部中断1,寄存器组3
```

```
while (P3^2==0)
{for(;;)
{;}
}
  IE1=0;//中断标志清零
                //主函数
void main(void)
   for (m1=0; m1<50; m1++)
       ini_int1();//开中断
       WaitNms (250);
       LCDInit();//初始化
       ShowNUMCharH(0x80,0x01,32);//显示半宽特殊符号
       ShowNUMCharH(0x90,0x30,32);//显示半宽0~?数字标点
       WaitNms (250);
       LCDInit();//初始化
       ShowQQCharH(0x80,uctech6,8);//调用字库
       ShowQQCharH(0x90, uctech7, 8);
       WaitNms (250);
                                    ~~~~~2,显示8*16字符
       LCDInit();//初始化
       WRCommandH(0x01); //清除显示DDRAM
       WRCGRAMH(0xff,0x00,0x40);//写入横(自编特殊符号)
       WRCGRAMH (0x00, 0xff, 0x50); //写入横2
       WRCGRAMH (0xaa, 0xaa, 0x60); //写入竖
       WRCGRAMH (0x55, 0x55, 0x70); //写入竖2
       ShowCGCharH(0x80,0x00);//显示横并填满
                                        ~3, 隔横显示
       WRCommandH(0x01); //清除显示DDRAM
       ShowCGCharH(0x80,02);//显示横2并填满
       WaitNms (250);
                         //等待时间
                                      ~~~~3,隔横显示
       WRCommandH(0x01); //清除显示DDRAM
       ShowCGCharH(0x80,04);//显示竖并填满
```

```
WaitNms (250); //等待时间
                  ~~~~~~~~~~~~~~~~~4, 隔列显示
WRCommandH (0x01);
ShowCGCharH (0x80, 06);
WaitNms (250);
                     ~~~~~~~~~~5,隔列显示
WRCommandH (0x01);
WRCGRAMH(0x00, 0x00, 0x40);
WRCGRAMH(0x00, 0x00, 0x50);
WRCGRAMH (0xaa, 0x55, 0x40);
WRCGRAMH (0x55, 0xaa, 0x50);
ShowCGCharH (0x80,00);
WaitNms(250);
WRCommandH (0x01);
ShowCGCharH (0x80, 02);
WaitNms (250);
//显示汉字一屏
LCDInit();//初始化
ShowQQCharH(0x80, uctech, 8);
ShowQQCharH(0x90, uctech3, 8);
CLEARGDRAMH (0x00);
WRGDRAM128X8(0,0,0xff);//单独一行反白
WaitNms (250);
             ~~~~~8, 显示内部汉字
LCDInit();//初始化
ShowQQCharH(0x81, uctech1, 6); //显示'绘晶科技'
ShowQQCharH(0x91,uctech2,6);//显示'
CLEARGDRAMH(0x00); //清除显示绘图
wr_org(0xff,0xc0,0x03); //绘图演示-画边框
                         ~~~~~~~~~8,显示图文混合
LCDInit();//初始化
ShowQQCharH(0x81,uctech1,6);//显示'绘晶科技'
ShowQQCharH(0x91,uctech2,6);//显示
CLEARGDRAMH(0xff); //
WaitNms(250);
                         ~~~~~~~~9,显示图文混合
```

```
----- -以下老化测试99小时
    LCDInit();//初始化
    ShowQQCharH(0x80, uctech4, 2); //调用字库
   ShowQQCharH(0x90, uctech9,8);//调用字库
   ShowQQCharH(0x88, uctech8, 8); //调用字库
   ShowQQCharH(0x98,uctech5,8);//调用字库
    for (z=0; z<10; z++)
        WRCommandH(0x80+2);//写地址
        WRDataH(0x3a);
        WRDataH(0x30+z); //分10
        for (z1=0; z1<10; z1++)
           WRCommandH(0x80+3);//写地址
           WRDataH(0x30+z1);
           WRDataH(0x3a);
            for (d=0; d<6; d++)
                   WRCommandH(0x80+4);//写地址
                   WRDataH(0x30+d); //分10
                   WRDataH(0x30+d1); //分01
//
                   WRCommandH (0x10);
                   for (s=0; s<6; s++)
                       WRCommandH(0x80+5);//写地址
                       WRDataH(0x3a);
                       WRDataH(0x30+s); //秒10
                       for (s1=0; s1<10; s1++)
                           WRCommandH(0x80+6);//写地址
                           WRDataH(0x30+s1);
                                               //秒01
                           WRDataH(0x3a);
                           WaitNms(5);///延时 x ms
                           WRCommandH (0x18);
                           for(s10=0;s10<10;s10++)
```

```
WaitNms(5);///延时 x ms
for(s100=0;s100<10;s100++)
{
    WRCommandH(0x80+7);//写地址
    WRDataH(0x30+s10);//100MS
    WRDataH(0x30+s100);//10MS
    WaitNms(5);///延时 x ms
}
}
}
}
}
```

绘晶科技